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Szego polynomials are associated with weight functions on the unit circle.
M. G. Krein introduced a continuous analogue of these, a family of entire functions
of exponential type associated with a weight function on the real line. An investiga
tion of the asymptotics of the resolvent kernel of sin(x - y )/n(x - y) on [0, s] leads
to questions of the asymptotics of the Krein functions associated with the charac
teristic function of the complement of the interval [ -I, I]. Such asymptotics are
determined here, and this leads to answers to certain questions involving the above
mentioned kernel, questions arising in the theory of random matrices. © 1994

Academic Press, Inc.

1. INTRODUCTION

The continuous analogue of the (Szeg6) orthogonal polynomials was
introduced by M. G. Krein [4]. These are families of entire functions of
exponential type which were shown by him to have some, but not all,
properties analogous to those enjoyed by the orthogonal polynomials.

If p is a nonnegative weight function defined on the unit circle then the
sequence of coefficients of the suitably normalized associated Szeg6 polyno
mials Pn(z) is given by the vector Tn(p)-t en, where Tn(p) is the
(n + 1) x (n + 1) Toeplitz matrix associated with p and en = (0, ...,0, 1) is
the last vector of a standard basis. Analogously, the inverse Fourier
transform of the Krein function P(s,O is the solution of the integral
equation

g(x)-rk(x- y) g(y) dy=k(x-s)
o

(1.1 )
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The particular kernel

HAROLD WIDOM

k )
sin x

(x =-
nx

(1.2)

arises in many areas of mathematics and mathematical physics. In par
ticular, the Fredholm determinant

det(I - Ks ), (1.3)

where K s denotes the operator with kernel k(x - y) on L 2 (O, s), and the
related quantity

d
- d). det(I - ..1.Ks ) I). ~ 1 = tr K.(! - Ks ) -1 . det(I - KJ, (1.4)

arise in the theory of random matrices [5, Chap. 5]. The first is the prob
ability, in a certain model, that a hermitian matrix has no eigenvalues in
a given interval of length s, and the second is the probability that there is
exactly one.

The main results of this paper are proofs of the two first-order
asymptotic formulas

(1.5 )

(1.6 )

(These mean, as usual, that the ratios of the two sides tend to 1 as s -+ 00.)
A complete expansion, of which (1.6) was the first term, was obtained by

Dyson [2]. The derivation, which used methods of inverse scattering, was
quite formal. Interestingly, the constant term in the expansion could not be
obtained this way but was derived by a (formal) scaling argument from a
result on the asymptotics of a certain Toeplitz determinant [6]. In [1] it
was shown how to derive the Toeplitz analogue of (1.5) through the
asymptotics of the polynomials orthogonal on a circular arc, and (1.5) itself
results from the same formal scaling argument. It was also pointed out
there how these first-order results could be used to determine all coef
ficients (except for the constant term alluded to above) in presumed
asymptotic expansions.

Thus, actual proofs of (1.5) and (1.6) are presented here for the first time.
What we need are good asymptotics for the kernel of Ks(l- KJ ~ 1, and a
theorem of Gohberg and Semencui [3, Th. III.8.1] shows the beginning of
the path to this goal. It gives the formula for the kernel of the operator
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Ks(l-Ks)-I, for an arbitrary convolution kernel k(x-y), in terms of the
solution to a modification of Eq. (1.1),

y+(x)-rk(x-y)y+(y)dy=k(x)
o

and the solution of

y_(x)-rk(y-x)y_(y)dy=k(-x).
o

The formula for Rs(x,y), the kernel of KJI-Ks)-', is

f
s + min(x, ),)

- y+(z-x)y_(z-y)dz,
s

(1.7)

(1.8 )

(1.9 )

where in the first term on the right ± = sgn(x - y). In our case k is even
and so y+(x)=y_(x)=g(s-x), where g is the solution to (1.1). So what
we need in order to prove (1.5) are the asymptotics of a certain family of
Krein functions.

There is a well-developed asymptotic theory for Szeg6 polynomials and
it turns out, not surprisingly, that some of the ideas can be used for Krein
functions as well. For the Szeg6 polynomials the classical method uses the
fact that they solve an extremal problem. One first finds a good approxima
tion to the extremal quantity and then produces a polynomial that gives
this good approximation. This must then be close to the Szego polynomial.
There seems to be no analogous extremal quantity for the Krein functions
but we found that we could use instead a certain kind of "reproducing"
property (see Lemma 1 below) as a substitute. Another awkwardness is
that in the case of (1.2) the Fourier transform of 8( t) - k( t) (note that
1- K s is convolution by this) is not supported on the full real line, IR. In
fact, it is the characteristic function of the complement in IR of the interval
[ - 1, 1]. Thus we have the continuous analogue of the polynomials
orthogonal on a circular arc, rather than the full circle. This is an added
complication, but the difficulties are not serious. We shall not work with
the Krein function pes, ~) directly, but rather the Fourier transform (J)(O
of the solution to (1.7). The relation between these functions is

and the asymptotics of (J)( ~) are given in Lemmas 5 and 6(b).
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Since, as is well known, the logarithmic derivative of (1.3) with respect
to s equals -R,(s, s), it should come as no surprise that we can derive (1.6)
also by these methods.

To end this introduction we acknowledge with pleasure our gratitude to
Estelle Basor and Craig Tracy, who brought our attention to the problem
of the asymptotics of (1.5).

2. PROOF OF (1.5)

We denote by y the common solution of Eq. (1.7) and (1.8). In terms of
this solution formula (1.9) for the resolvent kernel becomes

R,(x,y)=y(!x-YI)+ J:in(x.
y
)y(x-z)y(y-z)dz

f
s + m;n(x, y)

- y(z-x)y(z-y)dz,
s

and it follows that

(2.1 )

trKs(I-Ks )-l=sy(O)+ f: (s-2x)Y(xfdx. (2.2)

The main contribution will come from the integral. If we set

then the integral in question equals

1 fX -
2n -x qJ(~) [sqJ(O + 2hp'(OJ d~.

We shall write

E=(-oo, -l)u(l, (0).

(2.3 )

LEMMA 1. Suppose f is a smooth function defined on [0, sJ, extended to
be 0 outside the interval. Set l/J = j Then

both integrals being principal value integrals at 00.
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Proof We have, since k=X[-l,l]'

= foo l/J«()d(-2nrk(x)j(x)dx,
-00 0

and similarly,

55

h(O = e(l/2) is(1,; - v0=!l

Since K s y = y - k the assertion follows. I
We now introduce a function which has the same reproducing property

as <po Not being entire, it will certainly not equal <p, but it will be a good
approximation to <p on EO, the complement of E in the complex plane. This
function is

(+j~

2~'

We define~ as that branch, analytic in E C
, which is asymptotically

equal to ~ as (~ 00 in the upper half plane. For ~ E E we write

h ± (~) = lim h( ~ ± ie).
£.-+0+

LEMMA 2. With l/J as in Lemma 1 we have

f [h+«()+h_«()]l/J«()d(=f
oo

l/J«()d(.
E -00

Proof The variable change

t=(-~

takes E C to the lower half-plane. Since

(2.4)

t-l=(+~,

the integral in question becomes
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where yIl=f is that branch which equals 1 when t = 0 and extends
analytically into the lower half-plane. We can write

11 - t- 2
1 = t~2 )1- t2yIl=f,

where both square roots equal 1 when t = 0, but one extends analytically
into the upper half-plane, the other into the lower. Hence the integral itself
can be written

i f: e(I!2)iSlljl(i(t~1 + t» )1- t2 t~2 dt,
~ oc

(2.5)

the square root now being the one that extends analytically into the upper
half-plane. But for real e

ljI(O = J: e-i~X!(x) dx

and this extends to an entire function of e which is O(e>lm ~/I el) as e -+ 00

in the upper half-plane and is

as e-+ 00 in the lower half-plane. It follows that the integrand in (2.5)
extends analytically into the upper half-plane, is O( Itl- 2) as t -+ 00, and is

as t -+ 0. The assertion follows from these facts, if we use the obvious
contour with two semi-circles and the relation

n!(O)=f
X

ljI(e) de· I
- OCI

LEMMA 3. For every! E L 2(O, s), with ljI = j, we have

f [1 +41(e)-h+(e)-L(OJ ljI(e)de=O.
E

Proof The assertion is immediate from Lemmas 1 and 2, the fact that
the functions 41, 1 - h +, and h ~ all belong to LA - 00, (0), and the density
in L 2(0, s) of the smooth functions. I
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We want to deduce from Lemma 3 that 1 + q> is close to h + + h _ on E
and to do this we have to replace h + (~) + h _ (~) by an entire function with
the same general behavior as q> and which is close to h + + h _ on E. Such
a function will be 1+ q( ~), where

1 fia+ 00 h(17)
q(~)=-. _.-d1],

2m ia - 00 1] - ~

where we take a < min (0, 1m O. Clearly q is entire and it is easily seen that

q(~) = h(~) + O(I~I)-I

q(0 = O( 1~ I)- I

as ~ -. 00, 1m ~ ~ 0

as ~ -. 00, 1m ~ ~ O.
(2.6 )

(For the first we move the path of integration to above 0

LEMMA 4. We have, as s -. 00,

(a) fEll + q(~) - h + (~) - h _ (~) 1
2 d~ = O(s - 1 ),

(b) q(~) = h(~) + 0(1) uniformly on compact subsets of E C
•

Proof Using the same variable change (2.4) as before (with 17 replacing
~) we obtain

q(O=~fe(L/2)jSI 1 (l-t-2) _ dt, (2.7)
2m J 1 - t2 t I + t - 2~

where the path of integration can be taken to be a horizontal line,
traversed from left to right, well below the real axis. The integrand is
single-valued in the plane cut from -1 to -1 + ioo and I to 1+ ioo. It has
a pole at t = 0 with residue - l.

Consider part (a) first, when ~ E E. The integrand has poles also at
~ ±~ on the real line with residues h ± (~). Let C + denote the cut
from 1 to I + ioo traversed "counterclockwise," i.e., once in each direction,
using the two limiting values of the integrand in the usual way. Similarly
C _ denotes the cut from -1 to -1 + ioo traversed counterclockwise. Since
the integrand is O( 1tl- 2) as t -+ 00 in the upper half-plane we see easily that

To conclude the proof of (a) we must also show that
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We have
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J =2f±l+iOO e(I/2)ist 1 (1-~) dt
C± ±I ,JT=f t 2 t-l+t-2~

with an appropriate branch of the square root. If we write t = ±1+ iu the
part of the integral corresponding to u> 8 (for any 8> 0) is a function
which is exponentially small in s times I~I-I. The integral over u < 8 is
bounded by a constant times

fJ e-(112)su ~ du
o u2 + ~2 - I

and it is an easy exercise that the L 2 norm of this over ~ E E in O(s -1 /2).

For part (b), when ~ E E C
, the poles other than the one at t = 0 are

at ~ - R-=t in the lower half-plane and ~ +R-=t in the upper. The
former contributes the residue h( ~) and the other a residue which is
exponentially small as s - ro. This establishes (b), with 0(1) equal to 1
plus an exponentially small term. I

LEMMA 5. IE 11 + qJ(~) - h+(~) - h _(~W d~ = O(S-I).

Proof Write the integrand as

[1 + qJ(~) -h+(~) - h_(~)] [1 + q(~) - h+(O - h_(~)]

+ [1 +qJ(~)-h+(O-L(O] [qJ(O-q(~)].

It follows from (2.6), the asymptotic behavior of h, and the Paley-Wiener
theorem that q is the Fourier transform of a function in L 2(0, s), as is qJ.
Hence by Lemma 3 the integral over E of the second term above is O. By
Lemma 4(a) the square of the integral of the first term has absolute value
at most a constant times

The integral here is exactly what we started with, so the result follows. I
The next lemma will tell us that the major contribution to the integral

in (2.3) will come from the interior of the interval [-1, 1], and that qJ is
very close to h there.

LEMMA 6. (a) For any e> 0 there is a 8> 0 such that

f [lqJ(~W + IqJ'(~)n d~ = O(e"S)
1'1> I-J

as s -+ 00.
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(b) <p( ~) = h(0(1 + O(s - 1/2)) as s -+ 00 uniformly on compact subsets
of E C

•

Proof We begin with (a). It is easy to check that

(2.8 )

and so from Lemma 5

The function

O(~) = <p(0 e- (1/2) is(~ -.JV=I)

is analytic in EC and O(I~I-I) for large ~, and so for ~ ¢ E

(2.9)

(2.10 )

(2.11 )

Here f indicates that E is traversed twice, once in each direction, using the
appropriate limiting values of 0 in the integrand. Let r denote the
positively oriented contour (actually, the union of two contours) consisting
of the points whose distance to E is 2b. Thus r has two semi-circular parts
and four horizontal parts. We have, of course, from (2.9) that

t IO('1W dO = O(s).

From this and the integral representation (2.11) we deduce that

t IO(~W Id~1 = O(s).

(For the integrals over the semi-circular parts of r this is immediate; for
the horizontal parts we use the uniform boundedness of the operators

on L 2( - 00, 00 ).) And from this it follows that
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Clearly Ii --. 0 as b --. O. Finally we use the representations

for ~ E ( - 00, - 1 + iJ) u (1 -iJ, 00), the last estimate, and the argument just
preceding it, to deduce the assertion of part (a).

For the proof of (b) we start with

which follows from Lemmas 4(a) and 5. This is equivalent to

from which we deduce (by mapping E C to the unit disc, for example, and
using the fact that the integrand here is bounded in E C

) that

uniformly on compact subsets of E C
• Assertion (b) follows from this,

Lemma 4(b), and the fact that Ih(¢)1/s 1
/
2

--. C1J uniformly on compact
subsets of E C

• I

LEMMA 7. We have

f~,,: qJ(¢) [sqJ(¢) + 2iqJ'(OJ d¢ - ~ eS as S --. 00.

Proof By Lemma 6(a) it suffices to prove this asymptotic result when
the domain of integration is replaced by (- I + b, I - b) for some
small b>O. If we define 0(0 by (2.10) as before then Lemma6(b) tells us
that

(2.12 )
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uniformly on compact subsets of EC. It follows automatically from this that

8'(0 d
8(~) = d~ log (2.13)

uniformly on compact subsets of E C
, and so uniformly on (-1 + £5, 1 - £5).

Using the general fact

- 2 d
f(~)f'(~)= If(~)1 d~ logf(~)

we can write our integrand as

e
S~ /8( ~ )/2 [ S - 5 ( 1+k) + 2i ~«i:]

=es,/I-~2Io(~W [_ i¢ s+2i o'(¢)].
Jt-=r 8(~)

(We also used the fact that jZ2=1 = i Jt-=r for ~ E (-1, 1), the latter
square root being positive.) Since the expression outside the brackets is
even and the first term in brackets is odd its contribution to the integral
over (-1 + 0, 1 - 0) is zero. Using (2.9) and (2.10) we see that the integral
in question is asymptotically

. 20'(0) fbr S

21 10(0)1 0(0) '.{;- e .

As is easily seen, 10(0)1 = IjJ2 and 0'(0)j8(0) = Ij2i, and the result
follows. I

All that remains to finish the proof of (1.5) is to show that the first term
on the right side of (2.2) is o(e sj s3/2). In fact we shall show in the next
section that it is of order 52, but the much cruder estimate is all we need
now and can be obtained from what we have already done, as follows.
From Lemma 6 and the behavior of h it is trivial that

foo IqJ(~Wd~=O(eS5-1/2),
- 00

which is of course equivalent to

ry(xf dx = O(ess- 1
/
2

).
o
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From this an the defining equation (1.6) for y it follows that y(O) =
O(e'/2s -1/4), which is more than good enough.

3. PROOF OF (1.6)

What we shall prove is that

(3.1 )

and (1.6) will follow upon integration. As mentioned above we have (a
general fact)

d
-log det(I - K,) = - R,(s, s),
ds

and so from (2.1)

d
ds log det(I - Ks ) = -y(O).

Of course,

1 fcoy(O)=- rp(Od~.
n -co

If we set x =0 in (1.7) and use the fact k=X[ _ I, 1] we obtain

1 1 fly(O) = - + -2 rp(O d~.
n n-I

(3.2)

Let us estimate the error if we replace rp by q in the integral. We apply
Lemma 1, in the equivalent form

to ljJ = rp and to ljJ = q and subtract, obtaining

r [rp(O - q(OJ d~ =f rp(O [rp(~) - q(~)J dl;. (3.3)
-I E
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The second integral on the right is O(S-I), by Lemmas 4(a) and 5, while
the first is O(s), by Lemma 5 and (2.8). Thus

I I fl
Y(O)=;+21l -1 q(Od~+O(I).

From the representation (2.7) of q(e) it follows that

(3.4 )

(3.5)fl q(e)d~=-~fe(1/2)ist I (l_t-2)logt-Idt,
-I 2m ~ t+l

where the integral is taken over a horizontal line traversed left to right,
below the real axis, and the logarithm is that branch which is analytic in
the lower half-plane and which tends to 0 as t -+ 00 in the lower half-plane.
Recall that the square root is the branch which is analytic in the lower
half-plane and which tends to 1 as t -+ O. The integrand continues to a
single-valued analytic function in the plane cut from - I to - 1+ ioo and
from 1 to 1+ ioo except for a double pole at t = O. As in the proof of
Lemma 4(a), we introduce the contours C ± which are the cuts traversed
twice each. We find that the integrals over C ± are o( 1) as s -+ 00 and so
the right side of (3.5) equals 0(1) minus the residue of the integrand at
t = O. This gives, by an easy computation

Hence, from (3.4)

f
l llS

-I q(e)de ="2- 2 + 0 (1).

S
y(O) = 4+ O( 1).

(3.6)

In view of (3.2), we have established (3.1), and so (1.6). I
The reader may have wondered why we kept the term 1/1l in (3.4) since

it was swallowed by the error term O( 1). The reason is that one expects
y(O) = s/4 + o( 1) from Dyson's expansion; equivalently, in view of (3.6), the
error 0(1 ) in (3.4) is 0(1). Our O( 1) came from the crude estimation of the
right side of (3.3) by means of Schwarz's inequality. A more subtle way
of estimating this integral might lead to the correct estimate o( I) with
corresponding error term o(s) in (1.6).

640/77/1·5
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